Special Uniform Approximations of Continuous Vector-Valued Functions. Part I: Special Approximations in $C_X(T)$

Vlad Timofte

Département de Mathématiques, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland E-mail: vlad.timofte@epfl.ch

Communicated by E. Ward Cheney

Received December 4, 2001; accepted August 19, 2002

In this paper, we give special uniform approximations of functions u from the spaces $C_X(T)$ and $C_\infty(T,X)$, with elements \bar{u} of the tensor products $C_\Gamma(T)\otimes X$, respectively $C_0(T,\Gamma)\otimes X$, for a topological space T and a Γ -locally convex space X. We call an approximation special, if \bar{u} satisfies additional constraints, namely $\sup v\subset u^{-1}(X\setminus\{0\})$ and $\bar{u}(T)\subset\operatorname{co}(u(T))$ (resp. $\subset\operatorname{co}(u(T)\cup\{0\})$). In Section 3, we give three distinct applications, which are due exactly to these constraints: a density result with respect to the inductive limit topology, a Tietze–Dugundji's type extension new theorem and a proof of Schauder–Tihonov's fixed point theorem. © 2002 Elsevier Science (USA)

Key Words: uniform approximation; tensor product; extension by continuity.

1. INTRODUCTION

Throughout this paper, T is a topological space, X a locally convex space over the field $\Gamma \in \{\mathbf{R}, \mathbf{C}\}$ and $C_X(T)$ the linear space of all X-valued continuous functions on T. Consider the vector subspaces

$$C_{b}(T,X) := \{u \in C_{X}(T) \mid u(T) \text{ is bounded}\} \subset C_{X}(T),$$

$$C_{tb}(T,X) := \{u \in C_{X}(T) \mid u(T) \text{ is totally bounded}\} \subset C_{b}(T,X).$$

Recall that a subset $A \subset X$ is said to be totally bounded iff for every $W \in \mathscr{V}_X(0)$, there exists a finite subset $A_0 \subset X$, such that $A \subset A_0 + W$ (then, we can choose $A_0 \subset A$). If T and X are both Hausdorff spaces, we also use the standard notations

$$C_{\infty}(T,X) \coloneqq \{u \in C_X(T) \mid \forall W \in \mathscr{V}_X(0), \ u^{-1}(X \setminus W) \text{ is compact}\},$$

$$C_0(T,X) \coloneqq \{u \in C_X(T) \mid \text{supp } u \coloneqq \overline{u^{-1}(X \setminus \{0\})} \text{ is compact}\}.$$

It is obvious that $C_0(T,X) \subset C_\infty(T,X) \subset C_{tb}(T,X) \subset C_b(T,X)$. We have the natural inclusions

$$C_{\Gamma}(T) \otimes X \subset C_X(T), \qquad C_0(T,\Gamma) \otimes X \subset C_0(T,X).$$

Various results concerning the uniform density of $C_{\Gamma}(T) \otimes X$ in $C_X(T)$ and Weierstrass–Stone's type theorems are known (see [1, 4–8]). Therefore, we will restrict our attention to special uniform approximations and its applications.

2. SPECIAL APPROXIMATIONS IN $C_X(T)$

2.1. The vector space $(C_{\Gamma}(T) \otimes X)_{loc}$

It is easily seen that if E is a Γ -normed space and if $u \in C_b(T, E)$ has the following uniform approximation property:

$$\forall \varepsilon > 0, \ \exists u_{\varepsilon} \in C_{\Gamma}(T) \otimes E, \ \text{such that } ||u - u_{\varepsilon}||_{\infty} < \varepsilon,$$

then $u \in C_{\text{tb}}(T, E)$. Therefore, to get ε -uniform approximations of u for arbitrary $\varepsilon > 0$, we have to accept $u \in C_{\text{tb}}(T, E)$ (Theorem 1 will prove that this condition is also sufficient, even for special approximations) or to replace the vector subspace $C_{\Gamma}(T) \otimes E$ of $C_{E}(T)$ by a larger one. This is a reason for:

DEFINITION 1. Consider the "locally tensor product"

$$(C_{\Gamma}(T) \otimes X)_{\mathrm{loc}} \coloneqq \{u : T \to X \mid \forall t \in T, \ \exists V \in \mathscr{V}_{T}(t), \ \exists v \in C_{\Gamma}(T) \otimes X, \ \mathrm{such that} \ u_{|_{V}} = v_{|_{V}} \}.$$

Proposition 1. (1) $(C_{\Gamma}(T) \otimes X)_{loc}$ is a Γ -vector space and

$$C_{\Gamma}(T) \otimes X \subset (C_{\Gamma}(T) \otimes X)_{loc} \subset C_X(T).$$

(2) If T is compact, then
$$(C_{\Gamma}(T) \otimes X)_{loc} = C_{\Gamma}(T) \otimes X$$
.

Proof. Statement (1) is evident. The proof of (2) is immediate, using a partition of unity (p.u.) on T.

Remark 1. If $u \in (C_{\Gamma}(T) \otimes X)_{loc}$ and K is a compact subset of T, then $u_{|_{K}} \in C_{\Gamma}(K) \otimes X$.

2.2. The uniform density of $(C_{\Gamma}(T) \otimes X)_{loc}$ in $C_X(T)$

Theorem 1. Consider $u \in C_X(T)$. If T or u(T) is paracompact or if $u \in C_{\text{tb}}(T,X)$, then for every $W \in \mathscr{V}_X(0)$, there exists an approximant $u_W \in (C_\Gamma(T) \otimes X)_{\text{loc}}$, such that:

- (1) $(u u_W)(T) \subset W$, $u_W(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} u_W \subset u^{-1}(X \setminus \{0\})$,
- (2) $u_W = \sum_{i \in I} \varphi_i(\cdot) x_i$, with $(x_i)_{i \in I} \subset u(T)$ and $(\varphi_i)_{i \in I}$ p.u. on T. Moreover, if $u \in C_{\text{tb}}(T, X)$, then I can be choosen as a finite set and, consequently, $u_W \in C_{\Gamma}(T) \otimes X$.
- *Proof.* Fix $W \in \mathscr{V}_X(0)$. We can certainly assume that W is open and convex. If $u \in C_{\text{tb}}(T,X)$, then $\exists A_0 \subset u(T)$, such that A_0 is finite and $u(T) \subset A_0 + 2^{-1}W$. Set $A := A_0$ if $u \in C_{\text{tb}}(T,X)$, and A := u(T), otherwise. Thus, $u(T) \subset A + W$, and so $T = \bigcup_{x \in A} u^{-1}(x + W)$. There are three cases to consider:
- (a) If T is paracompact, then $\exists (\varphi_x)_{x \in A}$ p.u. on T, subordinated to the open covering $(u^{-1}(x+W))_{x \in A}$ of T.
- (b) If u(T) is paracompact, then $\exists (\psi_x)_{x\in A}$ p.u. on u(T), subordinated to the open covering $((x+W)\cap u(T))_{x\in A}$ of u(T). For $x\in A$, set $\varphi_x\coloneqq \psi_x\circ u$. Hence, $\operatorname{supp}\varphi_x\subset u^{-1}(\operatorname{supp}\psi_x)\subset u^{-1}(x+W)\ \forall x\in A$.
- (c) If $u \in C_{tb}(T,X)$, then A is finite and $u(T) \subset A + 2^{-1}W$. Define the map $\omega: X \to [0,1], \ \omega(z) = 0 \lor [1-2p_W(z)]$, where p_W means Minkowski's functional associated to W. Clearly, ω is continuous and supp $\omega \subset 2^{-1}\bar{W}$. For every $x \in A$, define $\omega_x: u(T) \to [0,1], \ \omega_x(z) = \omega(z-x)$. But $\forall z \in u(T) \subset A + 2^{-1}W$, $\exists x \in A$, such that $z \in x + 2^{-1}W$, which gives $\omega_x(z) = \omega(z-x) > 0$. Since $\sum_{y \in A} \omega_y > 0$ on u(T), we can define the map $\psi_x = (\sum_{y \in A} \omega_y)^{-1}\omega_x: u(T) \to [0,1], \ \varphi_x := \psi_x \circ u \ \forall x \in A$. Clearly, supp $\psi_x \subset (x+2^{-1}\bar{W}) \cap u(T) \subset (x+W) \cap u(T)$, supp $\varphi_x \subset u^{-1}(\text{supp }\psi_x) \subset u^{-1}(x+W) \ \forall x \in A$.

In all the above three cases, $(\varphi_x)_{x\in A}$ p.u. on T, subordinated to the open covering $(u^{-1}(x+W))_{x\in A}$ of T. Now set $v:=\sum_{x\in A}\varphi_x(\cdot)x\in (C_\Gamma(T)\otimes X)_{\mathrm{loc}}$. Obviously, $v(T)\subset \mathrm{co}(u(T))$. We next show that $(u-v)(T)\subset W$. Fix $t\in T$ and set $A_t:=\{x\in A\mid \varphi_x(t)\neq 0\}$. Thus, A_t is finite, $\sum_{x\in A_t}\varphi_x(t)=1$ and $\forall x\in A_t$, we have $t\in \mathrm{supp}\,\varphi_x\subset u^{-1}(x+W)$, and so $(u-v)(t)=\sum_{x\in A_t}\varphi_x(t)(u(t)-x)\in \sum_{x\in A_t}\varphi_x(t)W=W$. Therefore, $(u-v)(T)\subset W$. We need consider two cases:

- (i) If $0 \notin u(T)$, then $u^{-1}(X \setminus \{0\}) = T \supset \text{supp } v$, and so $u_W := v$ satisfies all required properties.
- (ii) If $0 \in u(T)$, choose $\varepsilon \in (0,1)$. Clearly, $\varepsilon p \bar{W} \subset \check{W} = W$. Define the maps $\psi: X \to [0,1]$, $\psi(x) = (0 \vee \frac{p_W(x) \varepsilon}{1 \varepsilon}) \wedge 1$, $\varphi = \psi \circ u: T \to [0,1]$ and $u_W = \varphi v \in (C_\Gamma(T) \otimes X)_{loc}$. For every $t \in T$, we have the equivalences:

$$\varphi(t) = 1 \Leftrightarrow p_W(u(t)) \geqslant 1 \Leftrightarrow u(t) \in X \backslash W \Leftrightarrow t \in T \backslash u^{-1}(W),$$

$$\varphi(t) = 0 \Leftrightarrow p_W(u(t)) \leqslant \varepsilon \Leftrightarrow u(t) \in \varepsilon \bar{W} \Leftrightarrow t \in u^{-1}(\varepsilon \bar{W}).$$

Since $v(T) \subset \operatorname{co}(u(T)), \ 0 \in u(T), \ 0 \leqslant \varphi \leqslant 1$ and $u_W = \underline{\varphi v + (1 - \varphi)}0$, it follows that $u_W(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} u_W \subset \operatorname{supp} \varphi = T \backslash u^{-1}(\epsilon \bar{W}) \subset T \backslash u^{-1}(\epsilon W) = u^{-1}(X \backslash \epsilon W) \subset u^{-1}(X \backslash \{0\})$. It remains to prove that $(u - u_W)(T) \subset W$. We have $u - u_W = u - \varphi v = (1 - \varphi)u + \varphi(u - v)$. If $t \in T \backslash u^{-1}(W)$, then $(u - u_W)(t) = (u - v)(t) \in (u - v)(T) \subset W$. If $t \in u^{-1}(W)$, then $(u - u_W)(t) \in (1 - \varphi(t))W + \varphi(t)W = W$. Therefore, $(u - u_W)(T) \subset W$.

COROLLARY 1. If T is quasi-compact, then for all $u \in C_X(T)$ and $W \in \mathscr{V}_X(0)$, there exists an approximant $u_W \in C_\Gamma(T) \otimes X$, such that

$$(u-u_W)(T) \subset W$$
, $u_W(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} u_W \subset u^{-1}(X \setminus \{0\})$.

COROLLARY 2. $C_{tb}(T,\Gamma) \otimes X$ is uniformly dense in $C_{tb}(T,X)$.

2.3. The case of $C_0(T,\Gamma) \otimes X \subset C_{\infty}(T,X)$

THEOREM 2. Assume that T and X are Hausdorff. If $u \in C_{\infty}(T, X)$, then for all $W \in \mathscr{V}_X(0)$ and K a compact subset of T, there exists an approximant $u_{W,K} \in C_0(T,\Gamma) \otimes X$, such that:

- $(1)(u u_{W,K})(T) \subset W, \ u_{W,K}(T) \subset \infty(u(T) \cup \{0\}), \ u_{W,K}(K) \subset \infty(u(T)), \ \text{supp } u_{W,K} \subset u^{-1}(X \setminus \{0\}),$
- (2) $u_{W,K} = \varphi \cdot \sum_{i \in I} \varphi_i(\cdot) x_i$, with I finite, $(x_i)_{i \in I} \subset u(T)$, $(\varphi_i)_{i \in I}$ p.u. on T and $\varphi : T \to [0,1]$ a continuous map, such that $\varphi_{|_K} \equiv 1$.

Proof. We can assume that $u \not\equiv 0$, that is $\exists t_0 \in T$, with $u(t_0) \not\equiv 0$. Now fix $W \in \mathscr{V}_X(0)$, W convex and $K \subset T$, K compact. Set M := K if $0 \not\in u(K)$, and $M := \{t_0\}$ if $0 \in u(K)$. Since $u \in C_\infty(T, X) \subset C_{\mathrm{tb}}(T, X)$, by Theorem 1, $\exists v = \sum_{i \in I} \varphi_i(\cdot) x_i \in C_\Gamma(T) \otimes X$, such that $(u - v)(T) \subset W$, $v(T) \subset \mathrm{co}(u(T))$, supp $v \subset u^{-1}(X \setminus \{0\})$, with I finite, $(x_i)_{i \in I} \subset u(T)$ and $(\varphi_i)_{i \in I}$ p.u. on T. Since $0 \not\in u(M)$ and u(M) is compact, $\exists W_0 \in \mathscr{V}_X(0)$, such that $W_0 \subset W$, W_0 open and convex and $u(M) \cap W_0 = \emptyset$, that is $M \subset u^{-1}(X \setminus W_0)$. Now define $\psi : X \to [0,1], \psi(x) = [0 \lor (2p_{W_0}(x)-1)] \land 1$, $\varphi = \psi \circ u : T \to [0,1]$, $w := \varphi v \in C_\Gamma(T) \otimes X$. For every $t \in T$, we have the following equivalences:

$$\varphi(t) = 1 \Leftrightarrow 2p_{W_0}(u(t)) \geqslant 2 \Leftrightarrow u(t) \notin W_0 \Leftrightarrow t \in u^{-1}(X \setminus W_0),$$

$$\varphi(t) = 0 \Leftrightarrow 2p_{W_0}(u(t)) \leqslant 1 \Leftrightarrow 2u(t) \in \bar{W}_0 \Leftrightarrow t \in u^{-1}(2^{-1}\bar{W}_0).$$

Clearly, $w(T) \subset [0,1] \cdot v(T) \subset \operatorname{co}(u(T) \cup \{0\})$. Since $M \subset u^{-1}(X \setminus W_0)$, we have $\varphi_{|_{M}} \equiv 1$, and so $w(M) = v(M) \subset v(T) \subset \operatorname{co}(u(T))$ and $\operatorname{supp} \varphi = \overline{u^{-1}(X \setminus 2^{-1}\overline{W}_0)} \subset u^{-1}(X \setminus 2^{-1}W_0)$ compact. Hence, $w \in C_0(T, \Gamma) \otimes X$, $\operatorname{supp} w \subset \operatorname{supp} \varphi \subset u^{-1}(X \setminus \{0\})$. We next show that $(u - w)(T) \subset W$. If

 $t\in u^{-1}(X\backslash W_0)$, then $(u-w)(t)=(u-v)(t)\in W$ and if $t\in u^{-1}(W_0)$, then $(u-w)(t)=(1-\varphi(t))u(t)+\varphi(t)(u-v)(t)\in (1-\varphi(t))W_0+\varphi(t)W\subset W$. Hence, $(u-w)(T)\subset W$. If $M\neq K$, then $0\in u(K)$, and so $w(K)\subset w(T)\subset \operatorname{co}(u(T)\cup\{0\})=\operatorname{co}(u(T))$ and $w=1\cdot (\sum_{i\in I}(\varphi\varphi_i)x_i+(1-\varphi)\cdot 0)$. We conclude that $u_{W,K}:=w$ satisfies all required properties.

3. APPLICATIONS OF SPECIAL APPROXIMATIONS

3.1. The density of $C_0(T,\Gamma) \otimes X$ in $C_0(T,X)$ with respect to the inductive limit topology

The following theorem is due to the constraint on the approximant's support.

THEOREM 3. Assume that T and X are Hausdorff. If $u \in C_0(T, X)$, then for every $V \in \mathscr{V}_{C_0(T,X)}(0)$ with respect to the inductive limit topology, there exists an approximant $u_v \in C_0(T,\Gamma) \otimes X$, such that:

- (1) $u u_v \in V$, $u_v(T) \subset co(u(T))$, supp $u_v \subset u^{-1}(X \setminus \{0\})$,
- (2) $u_v = \sum_{i \in I} \varphi_i(\cdot) x_i$, with I finite, $(x_i)_{i \in I} \subset u(T)$ and $(\varphi_i)_{i \in I}$ p.u. on T.

Proof. We can certainly assume that $0 \in u(T)$, since otherwise T is compact and the conclusion is given by Theorem 1. Fix $V \in \mathscr{V}_{C_0(T,X)}(0)$ and set $K := \operatorname{supp} u$, $C_0(T,X)_K := \{w \in C_0(T,X) \mid \operatorname{supp} w \subset K\}$. Since $V \cap C_0(T,X)_K$ is a neighborhood of the origin in $C_0(T,X)_K$ with respect to the uniform convergence topology, $\exists W \in \mathscr{V}_X(0)$, such that $\{w \in C_0(T,X)_K \mid w(T) \subset W\} \subset V \cap C_0(T,X)_K$. Now Theorem 2 shows that $\exists v = \varphi \cdot \sum_{i \in I} \varphi_i(\cdot)x_i \in C_0(T,\Gamma) \otimes X$, with I finite, $(x_i)_{i \in I} \subset u(T)$, $(\varphi_i)_{i \in I}$ p.u. on T, $\varphi : T \to [0,1]$ continuous, $\varphi_{|_K} \equiv 1$, and such that $(u-v)(T) \subset W$, $v(T) \subset \operatorname{co}(u(T))$, $\operatorname{supp} v \subset u^{-1}(X \setminus \{0\}) \subset K$. We thus get $u-v \in C_0(T,X)_K$, $(u-v)(T) \subset W$, and so $u-v \in V$. Since $v = \sum_{i \in I} (\varphi \varphi_i)x_i + (1-\varphi) \cdot 0$, $u_v := v$ satisfies all required properties. ■

COROLLARY 3. If T, X are Hausdorff, then $C_0(T, \Gamma) \otimes X$ is dense in $C_0(T, X)$ with respect to the inductive limit topology. Moreover, if X is metrizable, then this density is sequential.

Proof. The proof is immediate, with Theorem 3.

3.2. A Tietze-Dugundji's type extension theorem

In this subsection, T denotes a topological space and X a Γ -locally convex Hausdorff space. The following two lemmas emphasize the existing connection between approximation and extension theorems.

- Lemma 1. Assume that X is also a Fréchet space. Then, for every subset $F \subset T$, the following two statements are equivalent:
- (1) For all $u \in C_X(F)$ and $W \in \mathscr{V}_X(0)$, there exists $u_W \in C_X(T)$, such that $(u u_W)(F) \subset W$.
- (2) For every $u \in C_X(F)$, there exists $\tilde{u} \in C_X(T)$, such that $\tilde{u}_{|_F} = u$ and $\tilde{u}(T) \subset \operatorname{co}(\overline{u(F)})$.

Proof. It is to prove $(1) \Rightarrow (2)$. Let us first show that $\forall u \in C_X(F)$, $\forall W \in \mathscr{V}_X(0), \exists v \in C_X(T), \text{ with } (u-v)(F) \subset W, v(T) \subset \text{co}(u(F)) + W.$ Fix $u \in C_X(F)$, $W \in \mathscr{V}_X(0)$ and choose $W_0 \in \mathscr{V}_X(0)$, W_0 balanced, convex, such that $2W_0 \subset W$. According to our hypothesis, $\exists w \in C_X(T)$, with $(u-w)(F) \subset W_0$. It follows that $\overline{w(F)} \subset w(F) + W_0 \subset \operatorname{co}(u(F)) + 2W_0$, and so $co(\overline{u(F)}) \subset co(u(F)) + 2W_0 \subset co(u(F)) + W$. Now define the map $f: \overline{w(F)} \to X, \ f(x) = x$. By Dugundji's theorem, $\exists \tilde{f} \in C_X(X)$, such that
$$\begin{split} \tilde{f}_{|_{\overline{w(F)}}} &= f \text{ and } \tilde{f}(X) \subset \text{co}(\overline{w(F)}). \text{ Set } v \coloneqq \tilde{f} \circ w \in C_X(T). \text{ It follows that } \\ v_{|_F} &= \tilde{f} \circ w_{|_F} = w_{|_F}, \ (u-v)(F) = (u-w)(F) \subset W_0 \subset W, \ v(T) \subset \tilde{f}(X) \subset W_0 \subset W, \ v(T) \subset W, \ v(T) \subset W, \ v(T)$$
 $co(w(F)) \subset co(u(F)) + W$. To finally prove (2), fix again $u \in C_X(F)$. Since X is metrizable, we can choose $(W_n)_{n\in\mathbb{N}}$ a fundamental system of convex neighborhoods of the origin in X, with $2W_{n+1} \subset W_n \ \forall n \in \mathbb{N}$. For $u_0 := u \in C_X(F)$, $\exists v_0 \in C_X(T)$, such that $(u_0 - v_0)(F) \subset W_0$ and $v_0(T)$ $\subset \operatorname{co}(u_0(F)) + W_0$. Set $u_1 := u_0 - v_0|_F \in C_X(F)$. Thus, we can inductively define $(u_n)_{n\in\mathbb{N}}\subset C_X(F), (v_n)_{n\in\mathbb{N}}\subset C_X(T)$, such that $\forall n\in\mathbb{N}$, we have: $(u_n - v_n)(F) \subset W_n$, $v_n(T) \subset \operatorname{co}(u_n(F)) + W_n$, $u_{n+1} := u_n - v_n|_F$. Hence, $\forall n \in \mathbb{N}, u_{n+1}(F) = (u_n - v_n)(F) \subset W_n, \ v_{n+2}(T) \subset \operatorname{co}(u_{n+2}(F)) + W_{n+2} \subset \operatorname{co}(u_{n+2}(F))$ $W_{n+1} + W_{n+2} \subset 2W_{n+1} \subset W_n$. Therefore, $u_n \stackrel{\text{u.}}{\to} 0$ on F and $\sum_{n \geq 0} v_n$ is uniformly convergent on T. Set $v := \sum_{n=0}^{\infty} v_n \in C_X(T)$. But $\forall t \in F$, we have $v(t) = \lim_{n \to \infty} \sum_{j=0}^{n} v_j(t) = \lim_{n \to \infty} \sum_{j=0}^{n} (u_j(t) - u_{j+1}(t)) = u(t)$, and so $v_{|_F} = u$. As before, $\exists \tilde{g} \in C_X(X)$, with $\tilde{g}(x) = x \ \forall x \in u(F)$ and $\tilde{g}(X) \subset co(u(F))$. For $\tilde{u} := \tilde{g} \circ v \in C_X(T)$, we clearly have $\tilde{u}_{|_F} = u$ and $\tilde{u}(T) \subset \operatorname{co}(u(F))$.

- Lemma 2. Assume that X is also a Fréchet space. Then, for every subset $F \subset T$, the following two statements are equivalent:
- (1) For all $u \in C_{tb}(F, X)$ and $W \in \mathscr{V}_X(0)$, there exists $u_W \in C_{tb}(T, X)$, such that $(u u_W)(F) \subset W$.
- (2) For every $\underline{u} \in C_{tb}(F, X)$, there exists $\tilde{u} \in C_{tb}(T, X)$, such that $\tilde{u}_{|_F} = u$ and $\tilde{u}(T) \subset co(\overline{u(F)})$.
- *Proof.* It is to show $(1) \Rightarrow (2)$. The proof is similar to that of Lemma 1, observing first that $\forall u \in C_{\text{tb}}(F,X), \forall W \in \mathscr{V}_X(0), \exists v \in C_{\text{tb}}(T,X),$ with $(u-v)(F) \subset W, \ v(T) \subset \text{co}(u(F)) + W.$ Consequently, $u-v \in C_{\text{tb}}(F,X).$ Thus, the same construction as in the previous proof finally leads to the maps $v := \sum_{n=0}^{\infty} v_n \in C_{\text{tb}}(T,X)$ and $\tilde{u} := \tilde{g} \circ v \in C_{\text{tb}}(T,X)$.

The following lemma is a variant of Theorem 1.

Lemma 3. Assume that T is normal. Consider a closed subset $F \subset T$ and $u \in C_X(F)$. If T is paracompact or $u \in C_{tb}(F,X)$, then for every $W \in \mathscr{V}_X(0)$, there is a $u_W \in (C_\Gamma(T) \otimes X)_{loc}$, with $(u-u_W)(F) \subset W$ and $u_W(T) \subset co(u(F))$. Moreover, if $u \in C_{tb}(F,X)$, then we can find $u_W \in C_\Gamma(T) \otimes X$.

Proof. Fix $W \in \mathscr{V}_X(0)$, with W open and convex. If $u \in C_{\text{tb}}(F, X)$, then $\exists A_0 \subset u(F)$, with A_0 finite and $u(F) \subset A_0 + W$. Set $A := A_0$ if $u \in C_{\text{tb}}(F, X)$, and A := u(F), otherwise. Therefore, $u(F) \subset A + W$, $F = u^{-1}(A + W) = \bigcup_{x \in A} u^{-1}(x + W)$. For every $x \in A$, $u^{-1}(x + W)$ is open in F, and so $\exists U_x$ open in T, with $u^{-1}(x + W) = U_x \cap F$. Thus, $T = (T \setminus F) \cup \bigcup_{x \in A} U_x = \bigcup_{x \in B} U_x$, where $B := A \cup \{A\}$, $U_A := T \setminus F$. If $u \in C_{\text{tb}}(F, X)$, then $(U_x)_{x \in B}$ is a finite open covering of T, which is a normal space. If $u \notin C_{\text{tb}}(F, X)$, then $(U_x)_{x \in B}$ is an open covering of the paracompact space T. In both cases, $\exists (\varphi_x)_{x \in B}$ p.u. on T, subordinated to $(U_x)_{x \in B}$. Hence, $\varphi_A = 1 - \sum_{x \in A} \varphi_x$, supp $\varphi_A \subset T \setminus F$. Now choose $z \in u(F)$ and consider $u_W := \sum_{x \in A} \varphi_x(\cdot)x + \varphi_A(\cdot)z \in (C_\Gamma(T) \otimes X)_{\text{loc}}$. Obviously, $u_W(T) \subset \text{co}(u(F))$. We next show that $(u - u_W)(F) \subset W$. Fix $t \in F$ and set $J := \{x \in A \mid \varphi_x(t) \neq 0\}$. Thus, $\sum_{x \in J} \varphi_x(t) = 1$, $(u - u_W)(t) = \sum_{x \in J} \varphi_x(t) \times (u(t) - x)$. But $\forall x \in J$ we have $\varphi_x(t) \neq 0$, and so $t \in \text{supp } \varphi_x \subset U_x$, $u(t) \in x + W$. We thus get $(u - u_W)(t) \in \sum_{x \in J} \varphi_x(t)W = W$. Hence, u_W satisfies all required properties. ■

THEOREM 4. Assume that T is normal and X is Fréchet. Consider a closed subset $F \subset T$ and $u \in C_X(F)$. If T is paracompact or $u \in C_{tb}(F,X)$, then there exists $\tilde{u} \in C_X(T)$, such that $\tilde{u}|_{F} = u$ and $\tilde{u}(T) \subset co(\overline{u(F)})$.

Proof. By Lemma 3, F satisfies condition (1) of Lemma 1 or 2. In both cases, $\exists \tilde{u} \in C_X(T)$, such that $\tilde{u}|_{x} = u$ and $\tilde{u}(T) \subset \operatorname{co}(\overline{u(F)})$.

The above theorem is a strengthening of Theorem 3.6 [6], since u need not be a compact map (if T is paracompact) and X need not be a Banach space. For a metrizable space T, we recover Dugundji's extension theorem (see [2, 3]). The following corollary is known (see [6, Corollary 3.5, p. 54]).

COROLLARY 4. Assume that T is completely regular and that X is metrizable. Consider a compact subset $F \subset T$ and $u \in C_X(F)$. Then, there exists $\tilde{u} \in C_X(T)$, such that $\tilde{u}_{|_F} = u$ and $\tilde{u}(T) \subset \text{co}(u(F))$.

Proof. Since T is completely regular, $\exists \tilde{T}$ a compact topological space, such that T is a dense subspace of \tilde{T} . Let \tilde{X} denote the completion of X. Since $u \in C_{\tilde{X}}(F)$ and F is compact in \tilde{T} , Theorem 4 shows that $\exists v \in C_{\tilde{X}}(\tilde{T})$,

such that $v_{|_F} = u$, $v(\tilde{T}) \subset \operatorname{co}(\overline{u(F)}) = \operatorname{co}(u(F)) \subset X$. We thus get $\tilde{u} := v_{|_T} \in C_X(T)$, $\tilde{u}_{|_F} = u$, $\tilde{u}(T) \subset \operatorname{co}(u(F))$.

COROLLARY 5. Assume that T is σ -compact and that X is metrizable. Consider a closed subset $F \subset T$ and $u \in C_X(F)$. Then, there exists $\tilde{u} \in C_X(T)$, such that $\tilde{u}|_F = u$ and $\tilde{u}(T) \subset \text{co}(u(F))$.

Proof. By hypothesis, $\exists (K_n)_{n\in \mathbb{N}}$ a family of compact subsets of T, such that $T=\bigcup_{n\in \mathbb{N}}K_n$ and $K_n\subset K_{n+1}$ $\forall n\in \mathbb{N}$. Set $F_n:=F\cap K_n$ $\forall n\in \mathbb{N}$. Since F_0 is compact, K_0 is normal and $u_{|_{F_0}}\in C_X(F_0)$, by Corollary 4, $\exists u_0\in C_X(K_0)$, with $u_0|_{F_0}=u_{|_{F_0}},\ u_0(K_0)\subset \operatorname{co}(u(F_0))$. For fixed $n\in \mathbb{N}$, assume that $\exists u_n\in C_X(K_n)$, such that $u_n|_{F_n}=u_{|_{F_n}},\ u_n(K_n)\subset \operatorname{co}(u(F_n))$. Define $v\in C_X(K_n\cup F_{n+1})$ by $v_{|_{K_n}}=u_n,\ v_{|_{F_{n+1}}}=u_{|_{F_{n+1}}}$. By Corollary 4, it follows that $\exists u_{n+1}\in C_X(K_{n+1})$, such that $u_{n+1}|_{(K_n\cup F_{n+1})}=v$ and $u_{n+1}(K_{n+1})\subset \operatorname{co}(v(K_n\cup F_{n+1}))$. This easily gives $u_{n+1}|_{F_{n+1}}=u_{|_{F_{n+1}}},\ u_{n+1}(K_{n+1})\subset \operatorname{co}(u_n(K_n)\cup u(F_{n+1}))=\operatorname{co}(u(F_{n+1}))$ and $u_{n+1}|_{K_n}=u_n$. Therefore, we can inductively define $u_n\in C_X(K_n)$, such that $\forall n\in \mathbb{N}$, we have $u_{n+1}|_{K_n}=u_n$, $u_n|_{F_n}=u_{|_{F_n}}$ and $u_n(K_n)\subset \operatorname{co}(u(F_n))$. It follows that $\exists \tilde{u}\in C_X(T)$, defined by $\tilde{u}|_{K_n}=u_n$ $\forall n\in \mathbb{N}$. Obviously, $\tilde{u}|_F=u$ and $\tilde{u}(T)\subset \operatorname{co}(u(F))$. ■

3.3. A proof of Schauder-Tihonov's fixed point theorem

LEMMA 4. Let T be a topological space, Y a Γ -topological vector space and $(u_{\delta})_{\delta \in \Delta} \subset C_Y(T), (t_{\delta})_{\delta \in \Delta} \subset T$ nets, such that $t_{\delta} \to t \in T$ and $u_{\delta} \xrightarrow{\mathrm{u}_{\epsilon}} u$, $u: T \to Y$. Then, $u_{\delta}(t_{\delta}) \to u(t)$.

Proof. The proof is standard. ■

The following proof is due to the constraint on the approximant's range.

Theorem 5 (Schauder-Tihonov). Let X be a Γ -locally convex Hausdorff space, M a closed convex subset of X and $U: M \to M$ a completely continuous operator. Then, U has a fixed point.

Proof. Since U is completely continuous, $K := \overline{U(M)}$ is compact in X. Clearly, $K \subset M$. On $\mathscr{W} := \{W \in \mathscr{V}_X(0) \mid W \text{ is balanced}\}$, we consider the usual order relation, given by: $W_1 \preceq W_2 \Leftrightarrow W_1 \supset W_2$. Now fix $W \in \mathscr{W}$. Since $U \in C_{\operatorname{tb}}(M,X)$, by Theorem 1, $\exists U_W = \sum_{i \in I} \varphi_i(\cdot)x_i \in C_\Gamma(M) \otimes X$, such that $(U - U_W)(M) \subset W$, $(x_i)_{i \in I} \subset U(M)$, $(\varphi_i)_{i \in I}$ p.u. on M for some finite set I. Set $K_W := \operatorname{co}(\{x_i \mid i \in I\}) \subset \operatorname{co}(U(M)) \subset M$, $X_W := \operatorname{Sp}(K_W)$. But X_W is clearly normable since it is Hausdorff and has finite dimension, K_W is convex and compact and $U_W(K_W) \subset U_W(M) \subset K_W$. Now Brouwer's fixed point theorem shows that $\exists x_W \in K_W$, such that $U_W(x_W) = x_W$. This

leads to $x_W = U_W(x_W) \in U_W(M) \subset U(M) + W \subset K + W$, and so $\exists y_W \in K$, such that $x_W - y_W \in W$. We thus get $(U_W)_{w \in \mathscr{W}} \subset C_X(M)$, $(x_W)_{w \in \mathscr{W}} \subset M$ and $(y_W)_{w \in \mathscr{W}} \subset K$, nets with the above properties. But $(U - U_W)(M) \subset W$ and $x_W - y_W \in W \ \forall W \in \mathscr{W}$, lead to $U_W \overset{\mathrm{u.}}{\to} U$ and $x_W - y_W \to 0$. As K is compact, $(y_W)_{w \in \mathscr{W}} \subset K$ has a subnet $(y_{\varphi(\delta)})_{\delta \in \Delta}$, convergent to an element $\xi \in K$. Therefore, $U_{\varphi(\delta)} \overset{\mathrm{u.}}{\to} U$ and $X_{\varphi(\delta)} \to \xi$. Now Lemma 4 gives $X_{\varphi(\delta)} = U_{\varphi(\delta)}(x_{\varphi(\delta)}) \to U(\xi)$, and so $U(\xi) = \xi$.

REFERENCES

- M. Chao-Lin, Sur l'approximation uniforme des fonctions continues, C. R. Acad. Sci. Paris Sér. I Math. 301 (1985), 349–350.
- 2. J. Dugundji, An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353–367.
- 3. J. Dugundji, "Topology" pp. 188-189, Allyn and Bacon Inc., Boston, 1970.
- S. Machado, On Bishop's generalization of the Weierstrass–Stone theorem, *Indag. Math.* 39 (1977), 218–224.
- J.B. Prolla, "Approximation of Vector Valued Functions," North-Holland Publishing Co., Amsterdam/New York/Oxford, 1977.
- 6. J.B. Prolla, Uniform approximation: the non-locally convex case, *Rend. Circ. Mat. Palermo(2)* **42** (1993), 93–105.
- 7. J.B. Prolla, On the Weierstrass-Stone theorem, J. Approx. Theory 78 (1994), 299-313.
- A.H. Shuchat, Approximation of vector-valued continuous functions, *Proc. Amer. Math. Soc.* 31 (1972), 97–103.